《清华大学团队与腾讯AI_Lab专项合作夺冠FPS游戏AI竞赛VizDoom》(3)
来源:未知 时间:2018-08-28 11:30
游戏AI研究的奥义——远不止于游戏本身。这是一个富有挑战而令人振奋的研究课题,研究当中累积的经验、方法与结论,能在更广大深远的范围被利用。首先是打通虚拟与现实世界的藩篱,从而赋能物理世界,比如无人车和机器人的发展;其次,游戏中对话智能的研究,或能成为通向强人工智能的重要路径;第三,研究游戏中人、智能体和环境的交互,能让智慧城市这样复杂而意义深远的项目受益。
游戏AI涉及到三个核心能力:对外界环境的感知,根据状态做出的决策,人与智能体之间的对话。比如在围棋的游戏场景,可以通过感知棋盘的全局表达状态决定在哪里落子。而现实中的无人车,同样可以通过视觉,激光雷达的感知对方向盘,刹车等动作做出决策。
理解了游戏AI的三个核心能力,那就可以解释研究中的三个核心挑战及腾讯目前探索的一些解决方案。
第一个挑战是游戏的状态空间过大。比如很多战略型游戏的状态空间是无穷维,远大于围棋空间。腾讯提出了一套整合了模型,算法,与计算体系结构的解决方案,叫做腾讯机器大脑,整个系统的核心是使用深度神经网络来建模超大规模的状态空间。
第二个挑战是许多复杂的多玩家游戏需要多个智能体协调操作,目前这方面理论比较缺乏。为设计出一个完善的多智能体AI,一个核心问题是将强化学习的价值网络与描述宏观战略的行为树进行互操作,并使其融合。
第三个挑战是绝大部分游戏AI是用模拟器在一个理想化的虚拟世界中开发。如何打通虚拟与现实,又是一个核心挑战。我们的解决方案结合反向强化学习及动态探索机制,对游戏AI中的参数进行贝叶斯升级。这样得到的系统能保证在现实世界花最小的成本,就能成功部署。
这一套感知、对话与决策模块,形成了一套通用系统,未来有望在现实中被应用到更多场景中,这就是我们说的虚拟对现实的赋能。